Lesson Plan

Name of College: Government College for Women, Shahzadpur (Ambala)

Academic Session: April-July (2021-22)

Class: B.Sc. 6th Semester Non-Med (4-6) Days

Paper: Atomic and Molecular Spectroscopy (PH-602)

Teacher's Name: Dr. Raj Kumari

Month	Dates	Topic to be covered	Academic/ Activity to be organized	Assignments/ Tests
April	1-2	Unit – I: Historical background of atomic spectroscopy Introduction of early observations, emission and absorption spectra		
	7-9	atomic spectra, wave number spectrum of Hydrogen atom in Balmer series		
	14-16	Bohr atomic model (Bohr's postulates), spectra of Hydrogen atom, explanation of spectral series in Hydrogen atom		
	21-23	un-quantized states and continuous spectra spectral series in absorption spectra, effect of nuclear motion on line spectra (correction of finite nuclear mass)		
	28-30	variation in Rydberg constant due to finite mass, short comings of Bohr's theory Wilson Sommerfeld quantization rule, de-Broglie interpretation of Bohr quantization		Assignment I
-kg	,	law Bohr's corresponding principle, Sommerfeld's extension of Bohr's model		
May	5-7	Sommerfeld relativistic correction, Short comings of Bohr-Sommerfeld theory Vector atom model; space quantization, electron spin, coupling of orbital and spin angular momentum, spectroscopic terms and their notation quantum numbers associated with vector atom model, transition probability and selection rules		
	12-14	Unit -II: Vector Atom Model (single valance electron) Orbital magnetic dipole moment (Bohr megnaton), behavior of magnetic dipole in external magnetic field; Larmors' precession and theorem	Declamation Contest	

	19-21	Penetrating and Non-penetrating orbits,		
		Penetrating orbits on the classical model		
		Quantum defect, spin orbit interaction		1
		energy of the single valance electron, spin		
		orbit interaction for penetrating and non-		
		penetrating orbit		
	26-28	quantum mechanical relativity correction		Assignment II
		Hydrogen fine spectra, Main features of		
		Alkali Spectra		
June	2-4	Rydberg-Ritz combination principle,		Test I
		Absorption spectra of Alkali atoms		
		observed doublet fine structure in the		
		spectra of alkali metals and its		
		Interpretation, Intensity rules for doublets,		
		comparison of Alkali spectra and		0 -,
		Hydrogen spectrum		
	9-11	UNIT-III: Vector Atom model (two		
	9-11	valance electrons)		
		Essential features of spectra of Alkaline-		
		earth elements		
		Vector model for two valance electron		
		atom: application of spectra		
	16-18	Coupling Schemes; LS or Russell –		
	10-18	Saunders Coupling		
		Scheme and JJ coupling scheme		
	23-25,	Two valance electron system-spectral		Test II
	30	terms of non-equivalent and equivalent		
	30	electrons, comparison of spectral terms in		
		L-S And J-J coupling		
T ,	1-2	Hyperfine structure of spectral lines and	Seminar by	
July	1-2	its origin; isotope effect, nuclear spin	students	
	7-9	Unit –IV: Atom in External Field	students	
	1-9	Zeeman Effect (normal and Anomalous),		
		Experimental set-up for studying Zeeman		
		effect,		
	14-16	Explanation of normal Zeeman effect		
	14-10	(classical and quantum mechanical)		
	21 22	Paschen-Back effect of a single valence		
	21-23	electron system. Weak field Stark effect of		
		Hydrogen atom,		
	20.20			Revision Test
	28-30	Raman Spectra		Revision Test
		Doubts/Querries		

Teacher's Sign

(Dr. Roj Kumani)

Principal